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Based on the Takagi±Taupin equations, an analytical expression for the three-

beam diffraction pro®le function in an elastically strained crystal plate is

derived. The strain parameters appear in the shape functions governing both

triplet-phase dependent and independent terms in the solution. Simulations

show that three-beam pro®les are signi®cantly in¯uenced. With increasing strain

any phase information in the pro®les is obscured and subsequently lost.

1. Introduction

A three-beam diffraction case arises when a secondary lattice

node is gradually excited on to the Ewald sphere by e.g.

rotating the crystal around a primary reciprocal-lattice vector

h, ful®lling Bragg's law. For a perfect crystal plate, the self-

consistent balance of the excited wave amplitudes, leading to

observable interference effects, is very well described within

the framework of the so-called fundamental equations of

X-ray dynamical diffraction theory (Colella, 1974; Authier,

2001).

In the late 70s and the early 80s, it was experimentally

shown that such effects were visible in imperfect (or `mosaic')

crystals too (Post, 1977; Chapman et al., 1981; Chang, 1982;

Thorkildsen & Mo, 1982). However, the subsequent theor-

etical developments were still aimed at clarifying various

aspects of the diffraction physics in perfect crystals ± see for

instance the review article by Weckert & HuÈ mmer (1997). The

in¯uence of crystal imperfection (in its broadest sense) has not

undergone any extensive theoretical investigations in the

literature. Normally, mosaicity (along with instrumental

broadening) has been accounted for by a convolution of the

intrinsic diffraction pro®le with a smearing function modelled

either as a Lorentzian (Chang & Tang, 1988; Shen et al., 2000)

or as a Gaussian (Weckert & HuÈ mmer, 1997); consult also

Thorkildsen et al. (2003). In all these cases, the distribution

functions are ad hoc taken into account at a rather late stage in

the analysis.

Another interesting development is due to Kohn and co-

workers who used three-beam diffraction concepts to obtain a

depth pro®le of crystal distortion (Kohn, 1988; Kohn &

Samoilova, 1992). This has been further extended by Schroer

(1998), who, by numerical simulations, included effects of

strain owing to multilayer deposition. Among other applica-

tions of three-beam diffraction in non-perfect crystals, one

should mention the determination of lattice mismatch in thin

layered materials outlined by Chang (1984) and the determi-

nation of piezoelectric constants by Avanci et al. (1998, 2000).

A different approach, directly addressing the issue of crystal

imperfection, has been devised by the present authors, who

applied the principles of statistical dynamical theory to

account for the propagation of the coherently scattered waves

from randomly distorted samples (Larsen & Thorkildsen,

1998b).

In the following, we include a displacement ®eld of the

imperfection state in question ± elastic strain ± at the begin-

ning of the analysis. This is straightforwardly done within the

Takagi±Taupin formalism. We will consider a semi-in®nite

crystal plate (no lateral boundaries) and perform an analysis

similar to that described in our previous paper (Thorkildsen et

al., 2001), hereafter denoted TLW. The solution is analytical,

expressed as a series expansion with a ®nite number of terms,

including the one carrying the information about the invari-

ant-phase triplet as well as phase-independent terms repre-

senting Aufhellung and Umweganregung. The result applies to

thin plates, as discussed in TLW.

2. Theory

2.1. Governing equations

A convenient way to include a gentle deformation ®eld,

u�r�, associated with the imperfection state of the crystal, is

inherent in the Takagi±Taupin equations (Takagi, 1962, 1969;

Taupin, 1964). These have been extensively applied in the two-

beam case [consult Authier (2001) for a comprehensive

review] to model diffraction from distorted crystals. The

formalism, in its perfect-crystal limit, has also been developed

for three-beam diffraction in ®nite samples (Thorkildsen,

1987; Thorkildsen & Larsen, 1998).

The Takagi±Taupin equations for one state of polarization

may generally be written in terms of the amplitudes of the



constituent waves, p, of the electrical displacement ®eld

(optical ®eld):
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For the three-beam case, p; q 2 fo; h; gg, where o designates

the incoming beam, while h and g refer to the primary

diffracted and the secondary diffracted beam, respectively.

Scattering among the beams is brought about by the lattice

planes with associated reciprocal-lattice vectors �h, �g and

��hÿ g�. For a uniformly deformed crystal, cf. Authier (2001),

equation (14.2b),1

�0p � �p ÿ
@

@sp

�p � u�r��; p 2 fh; gg: �2�

�o is put equal to zero. Provided the deformation ®eld (see

below) is of such a character that the deviation parameters

f�0pg are constant in space, the unitary transformation,

Dp � ~Dp exp�2�i
P

q �
0
qsq�, yields
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One should notice that in the derivation of the Takagi±Taupin

equations only ®rst-order terms are retained, while those

/ jr2�p � u�j are neglected (Takagi, 1969). This puts limits on

the deformation ®elds that might actually be analyzed by the

present approach. Implicitly, polarization coupling effects are

not considered. In addition, in accordance with TLW, neither

ordinary absorption nor refraction (Larsen & Thorkildsen,

1998a) are included. The coordinate sp is along the wavevector

Kp associated with the diffracted beam and ŝp the corre-

sponding unit vector. r is a real-space position vector. The

coupling coef®cient, �pq, is given by

�pq � ��re=Vc�FpqCpq;

where re is the classical electron radius, Vc is the unit-cell

volume, � the wavelength, Fpq the structure factor associated

with the reciprocal-lattice node pÿ q and Cpq is the polari-

zation factor for � or � polarization. It represents the scat-

tering power per unit length for a plane wave propagating with

wavevector Kq ful®lling the diffraction condition for the

reciprocal-lattice vector pÿ q. The deviation parameter �p

(Authier et al., 1968) is set equal to the excitation error, �p,

associated with the re¯ection p. From an experimentalist's

point of view, this implies a parametrization by the rocking

angle of the primary re¯ection as �h / �!, and the azimuthal

rotation angle about the primary lattice vector as �g / � . As

we focus on the integrated power of the primary diffracted

beam, � will govern the simulated three-beam diffraction

pro®le as discussed in TLW.

2.2. Deformation field

We consider a simple deformation ®eld: elastic strain. The

following model is adopted:

u�r� � u�sh; sg� � "hshŝh � "gsgŝg; �4�
where "h;g signi®es strain components in the ŝh and ŝg direc-

tion, respectively. For the special geometrical case considered,

fully symmetrical Laue±Laue diffraction with � �ŝp; ŝq� �
2�pq � 2�, the deviation parameters become

�0h;g � �h;g ÿ �2 sin2 �=��"h;g: �5�

2.3. Principle of solution

The principle of solution is accounted for in detail in TLW,

but for the sake of completeness some major points are

repeated here. The crystal plate and corresponding diffraction

geometry are depicted in Fig. 1. We consider a point source

located at S. The electrical displacement ®eld associated with

the primary diffracted beam at the point P on the exit surface

is

Dh�P S� / ~Dh��o;�h;�g� exp�2�i�0h�h� exp�2�i�0g�g�;
where �p � sp�P� ÿ sp�S�. ~Dh is the boundary-value Green

function, associated with equation (3), for the primary

diffracted wave®eld. In order to obtain the ®eld at the exit

point P, the amplitude contributions from all source points

within the base abc of the inverted Borrmann pyramid have to

be summed. That is,

Dh�P� � Dh�P j �0h; �0g� /
R R

abc

dAS Dh�P S�;

where dAS is an area element of the entrance surface. The

Green function is expressed as a series expansion,

~Dh��o;�h;�g� � D�e�o

P1
j�1

d
�j�
h ��o;�h;�g�;

where D�e�o is the source amplitude. Owing to the increasing

complexity, it is not worthwhile here to consider terms of

order higher than 3. Hence,
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Figure 1
Crystal and scattering geometry. Symmetrical Laue±Laue diffraction.
Slab thickness t. The scattering volume giving the displacement ®eld at
exit point P is the inverted Borrmann pyramid abcP. The origin of the
�so; sh; sg� coordinate system is also located at P. The wavevectors Ko, Kh

and Kg all form an angle  with the inward-drawn normal vector n̂.1 In this work, �0p is not scaled to the wavenumber, thus its dimension is AÊ ÿ1.



d
�1�
h � ���g�;

d
�2�
h �

�re

Vc

jFhgjjFgoj
jFhoj

ChgCgo

Cho

�i cos �� ÿ sin ���;

d
�3�
h � ÿ�o�h�oh�ho���g� ÿ�o�og�go ÿ�h�hg�gh:

�� � �oh � �hg � �go is the structure-invariant triplet phase

sum and �� � represents the Dirac � function. The remaining

steps in the calculation consist of determining the diffracted

power distribution and the integrated power. For a semi-in®-

nite crystal plate, the power is independent of the choice of

reference point P on the exit surface. Thus the integrated

power is given by

Ph /
R1
ÿ1

d�! jDh�Pj�0h; �0g�j2:

In this integration, terms of typeR1
ÿ1

dx fsin x sin�xÿ x1�=�x�xÿ x2�m�xÿ x3�n�g;
m; n 2 f0; 1; 2g

are interpreted as Cauchy principal values.

3. Results and discussion

The result for the integrated power is

Ph � P�0�h

�
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�hg�go

�ho
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Here P�0�h is the kinematical integrated power, and we have

de®ned the following dimensionless quantities, cf. equations

(7) and (8) of TLW:

�pq � �t= cos ���re=Vc�jFpqjCpq �7a�
�g � �2�t= cos ��g ÿ �0"g � �g ÿ �0"g; �7b�
�h � �0"h; �7c�
�0 � �4�t sin2 �=� cos �: �7d�

The extended shape functions are given by

f1��g; �h� �
�h ÿ �g ÿ �h cos �g � �g cos �h

�h�
2
g ÿ �2

h�g

;

f2��g; �h� �
�g sin �h ÿ �h sin �g

�h�
2
g ÿ �2

h�g

;

fA1��g; �h� �
�h��g��g ÿ �h� � �h sin �g� ÿ �2

g sin �h

�2
h��h ÿ �g��2

g

;

fA2��g; �h� �
�h�g��g ÿ �h� cos �h ÿ �2

h sin �g � �2�h ÿ �g��g sin �h

�2
h��h ÿ �g�2�g
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fU��g� �
�g ÿ sin �g

�3
g

:
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These functions should be compared with the perfect crystal

results, TLW equations (6)±(11). We observe that the strain

parameters are included in the independent variables of the

shape functions. Furthermore, in the perfect-crystal limit,

lim
"h;"g!0

f1��g; �h� � �1ÿ cos �g�=�2
g;

lim
"h;"g!0

f2��g; �h� � ��g ÿ sin �g�=�2
g;

lim
"h;"g!0

fA1��g; �h� � lim
"h;"g!0

fA2��g; �h� � fU��g�;

the correct values are retrieved. Thus the expression for the

integrated power becomes identical to the one published for

the perfect crystal plate [equation (6) in TLW]. It is interesting

to note that the introduction of this speci®c strain ®eld gives

different shape functions, fA1 and fA2, for the two Aufhellung

terms, cf. Fig. 2. This is in contrast to the perfect-crystal limit,

where both these terms, as well as the Umweganregung term,

are governed by the same (one-dimensional) shape function

( f3 in TLW, which is identical to fU). The Aufhellung terms

have their origin in interference between a single scattered

wave through the coupling �ho and the triple scattered ones,

caused by the couplings �ho�og�go and �hg�gh�ho, respectively.

These two cases of multiple re¯ections will occur along

different optical routes (Kato, 1976) and in a strained crystal

they will not experience the same lattice deformations. We

also note that Umweganregung, as it appears in our model, is

invariant of the strain parameter �h.

In order to exemplify the ®ndings, we now consider the

complete symmetrical Laue±Laue case 2�20=0�22=20�2 in silicon.

The expression for the relative change of the integrated power

owing to three-beam diffraction effects may then be expressed

by (the extinction correction term is omitted)
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Figure 2
Three-dimensional plots of the shape functions associated with the
Aufhellung terms.
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The dimensionless variables �g and �h are expressed in

`experimental terms' by parameterizing

�g � �a� ÿ b "g�t; �h � b"ht:

Relevant numerical values for the parameters relating to the

actual scattering situation in silicon are given in Table 1,

consult also x3 of TLW.

A ®nite value of "g causes a shift in the zero point of the

three-beam pro®le, given by

� �0� � 1:8"g:

This is also reported in the literature, e.g. Fig. 5 of Avanci et al.

(1998). Otherwise, this strain parameter will not in¯uence the

shape of the three-beam pro®le.

In Fig. 3, three-beam pro®les for various crystal strains, "h,

are presented. Following the discussion in TLW, the series-

expansion approach is valid for the crystal thickness t � 2 mm

used in the simulations. We observe that crystal strain strongly

in¯uences the shape of the three-beam diffraction pro®les. A

correct phase interpretation is obscured already at

"h � 0:0002. Here, the triplet phase sum seems to be changed

by approximately 90�. Such an apparent phase change has also

been predicted in strained layer systems by numerical simu-

lations (Schroer, 1998). Any phase information vanishes

completely at about "h � 0:001, and the interference effects

fade away as the strain, i.e. imperfection, increases. The strain

values are within the fracture limit of silicon, for which the

typical fracture strain varies between �0:004 and �0:007

(Brantley, 1973; Yi et al., 2000). The plots show signi®cant

in¯uence of small changes in the strain, which also indicates

the feasibility of three-beam diffraction as a sensitive tool for

measuring the effects of minute structural changes in the

scattering system.

4. Concluding remarks

It is shown theoretically that crystal imperfection signi®cantly

alters the three-beam diffraction pro®les. For the simple

deformation ®eld considered in the present analysis, small

elastic distortions tend to change the asymmetry of the pro®le.

If strain is increased, interference effects completely vanish

and any `dynamical' information is subsequently lost. Such

behavior is generally to be expected as the perfection state of

the crystal is changed when strain is introduced.

A model for elastic strain including terms quadratic in the

coordinates, e.g. spsq (Katagawa & Kato, 1974; Chukhovskii &

Petrashen, 1977), has been extensively studied in the two-

beam case ± consult chapters 13 and 14 of Authier (2001) for

further details. However, for the three-beam case, it still

remains a serious challenge to develop an analytical treat-

ment, at least within the present series-expansion approach,

for more complex cases than the one presented here. An

extension to deformation ®elds not linear in the spatial

coordinates calls for a generalized unitary transformation

of type Dp ! ~Dp exp�2�i
P

q

R sq

0 ds0q �
0
q� in order to obtain an

expression equivalent to equation (3). Another possibility for

considering other and more realistic strain ®elds is to apply

numerical techniques. Proper algorithms for solving the

Takagi±Taupin equations for the three-beam case are then a

prerequisite. The work of Schroer (1998) should in this context

provide an excellent starting point.
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Figure 3
In¯uence of crystal strain, "h, on three-beam diffraction pro®les
2�20=0�22=20�2, in a silicon crystal plate of thickness 2 mm. "g � 0.
Parameters as given in Table 1. Three-dimensional presentation and
selected pro®les: (a) perfect-crystal case ("h � 0); (b) "h � 0:0002; (c)
"h � 0:0010. � < 0 corresponds to the situation when g is inside the
Ewald sphere.

Table 1
Parameters relevant for the model calculations.

� polarization is assumed and the polarization factors are calculated according
to Weckert & HuÈ mmer (1997). � is measured in units of 10ÿ3 �, t in
micrometres, � in AÊ and "h;g in units of 10ÿ4. Using these conventions, a and b
are presented as dimensionless quantities.

n̂ � t a b �0 �� Coh Cog � Chg

�1�1�1 1.000 2.0 0.4947 0.8935 0.2535 0.0 0.8644 ÿ0.9655
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